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I. INTRODUCTION

In this paper a systematic approach to the calculation of
the long-range interactions between two homonuclear atoms
in arbitrary atomic states is presented. For two spherically
symmetric atoms in their ground states, the interaction can
be written �1,2�, e.g.,

V�R� = −
C6

R6 −
C8

R8 −
C10

R10 − ¯ . �1�

The Cn parameters are the dispersion coefficients while R is
the distance between the two nuclei. The procedures for de-
termining the dispersion coefficients for identical atoms in
two spherically symmetric states are known and there has
been a lot of activity in calculating the van der Waals coef-
ficients for such atoms �3–9�.

When one of the atoms is in a state with nonzero angular
momentum the situation becomes more complicated. In the
first case, the dispersion coefficient depends on the angular
momentum projection of the state. In the second case, there
is a possibility of excitation transfer between the two atoms
leading to what is usually termed the resonant van der Waals
interaction. This results in additional terms appearing in the
interaction potentials, e.g., the existence of a term inversely
proportional to R3 when one of the atoms is in a P state and
the other is in an S state.

The purpose of the present paper is to describe a proce-
dure for the calculation of the Cn dispersion parameters for
homonuclear atoms in arbitrary states. An examination of
some earlier work on this topic gives one the impression that
the theoretical formalisms for systems involving nonzero an-
gular momentum were developed in an ad hoc fashion with
expressions for different configurations derived on a case by
case basis �5,10–14�. Previously, the most sophisticated treat-
ments were the tensorial approaches developed by Ovsianni-
kov �15� and Santra and Greene �16�. The present study de-
scribes a general procedure which makes use of previous
results derived to describe the dispersion interaction between
two heteronuclear atoms �17�. Once the formalism is pre-
sented, it is applied to the calculation of the dispersion inter-
action for a number of alkali-metal and alkaline-earth metals
atoms.

II. THEORETICAL DEVELOPMENT

A. Theoretical overview

The approach used to generate the dispersion coefficients
is based on the work of Dalgarno who originally derived

expressions in terms of oscillator strength sum rules �1,2�.
This reduced the calculation of the Cn parameters for two
spherically symmetric atoms to summations over the prod-
ucts of the absorption oscillator strengths �originating in the
ground state� divided by an energy denominator. The sums
should include contributions from all discrete and continuum
excitations. In practice a pseudostate representation is used
which gives a discrete representation of the continuum
�6,17,18�. The sum over oscillator strengths needs to be re-
written in terms of a sum over the reduced matrix elements
of the electric multipole operator in cases where one �or
both� of the atoms is in a state with L�0 �17�.

The major part of any calculation involves the generation
of the lists of reduced transition matrix elements for the two
atomic states. This involves quite lengthy calculations to
generate the excitation spectrum of the pseudostate represen-
tation. It is then a relatively straightforward calculation to
use the procedure outlined in the present paper to process the
lists of matrix elements and generate the dispersion coeffi-
cients.

This section presents the algebraic results that are needed
in the evaluation of the sum rules in their most general form.

B. Matrix element evaluation

The general expression for the long-range interaction be-
tween two atoms has contributions from both first-order and
second-order perturbation theory �19�. There are three
classes of interaction that arise. In the first case, there is the
interaction that arises from second-order perturbation theory
which is always present. This interaction can be written as

V1�R� = − �
s=1

C2s+4

R2s+4 , . . . . �2�

In the second case, there is a first-order interaction that arises
when both atomic states have nonzero orbital angular mo-
mentum. This term can be written as

V2�R� = − �
s=1

La+Lb−1
C2s+3

R2s+3 , . . . . �3�

The number of terms in this sum are finite and depends on
the angular momentum of the individual atoms. The simplest
example of such an interaction is the quadrupole-quadrupole
interaction that occurs between two atoms in a P state.

The final interaction occurs because the two atoms are
identical �i.e., all the nonorbital quantum numbers are the
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same�. This means that excitation transfer between the two
atoms is possible as a first-order interaction. This interaction
is sometimes called the resonant van der Waals interaction,
and is written as

V3�R� = − �
s=�La−Lb�

�La+Lb�
C2s+1

R2s+1 . �4�

The range of allowed multipoles depends on the orbital an-
gular momentum quantum numbers �La and Lb� of the two
atoms. Once again the number of terms in this sum are finite
and depend on the angular momentum of the individual at-
oms. The simplest example of such an interaction is the
C3 /R3 dipole interaction that occurs when one atom is in an
S state and the other is in a P state.

The basic strategy adopted in the present work is to first
generate the basis of all allowable states in an atomic repre-
sentation. Next, the general expressions for the first and sec-
ond interactions between those states are developed. The
asymptotic molecular states are then derived by diagonaliz-
ing the Hamiltonian matrix for the multipole with the small-
est inverse power of internuclear distance. The dispersion
coefficients can then be evaluated by simply computing the
matrix elements of the first- and second-order interactions in
the molecular representation.

All expressions are given for the case of two atoms each
with a single active electron. These expressions can be trivi-
ally extended to the more general case since all atomic struc-
ture information is encapsulated in the reduced matrix ele-
ments.

C. Multipole expansion

The dispersion interaction operator in the asymptotic re-
gion, R�a0, may be presented in the form of expansion in
power series of R−1 �20�,

V�R� = �
k=1

�

�
k�=1

� vkk��n̂�

Rk+k�+1
, �5�

where

vkk��n̂� = �− 1�k�� �2K�!
�2k� ! �2k��!

�1/2

��CK�n̂� · �Qk�ra� � Qk��rb��K� , �6�

where K=k+k�, Qk�r�=rkCk�r� is the operator of the atomic
2k-pole electric moment, and the unit vector n̂=R /R points
from the first atom �a� to the second atom �b�. The Ck�� ,��
and CK�n̂� are the spherical tensors �21� of angular variables
of the atomic electron’s position vector r= 	r ,� ,�
 and those
of the interatomic unit vector n̂, correspondingly. Defining
the quantization axis in the n̂ direction simplifies Eq. �6� to

vkk��n̂� = �− 1�k�� �2K�!
�2k� ! �2k��!

�1/2

�Qk�ra� � Qk��rb��0
K

= �− 1�k�� �2K�!
�2k� ! �2k��!

�1/2

��
�

�k − �k���K0�Q−�
k �ra�Q�

k��rb� . �7�

D. Atomic representation

The zeroth-order basis function for two like atoms a and b
in states with angular momenta la and lb, with magnetic pro-
jections ma and mb, and a total magnetic quantum number
M =ma+mb can be written in the product form

��na,nb,ma,mb,M� = �nala,ma
�r1��nblb,mb

�r2� , �8�

where �na
has an energy eigenvalue of Ena

, and �nb
has an

energy eigenvalue of Enb
. The electronic and nuclear spin

quantum numbers of a and b should be the same. These basis
states occur as degenerate pairs when the �na , la ,ma� and
�nb , lb ,mb� quantum numbers are different. This second de-
generate basis state is

��nb,na,mb,ma,M� = �nblb,mb
�r1��nala,ma

�r2� . �9�

E. First-order interaction

It is normal to treat the first-order interaction as two cases.
There is the direct case, and there is the case where the states
have their electron coordinates interchanged. The computa-
tional approach adopted makes no distinction between these
cases.

Accordingly, the first-order interaction is initially evalu-
ated between two atomic states, the ��na ,nb ,ma ,mb ,M� and
��nc ,nd ,mc ,md ,M� basis functions. The electron-electron
operator, Eq. �5�, conserves M but not ma or mb. The general
matrix element is written as

Vmambmcmd

�1� = �
kk��

�− 1�k�

RK+1 � �2K�!
�2k�!�2k��!

�1/2

�k − �k���K0�

��nalamanblbmb�Q−�
k Q�

k��nclcmcndldmd� �10�

which is expressed most conveniently as

Vmambma�mb�
�1� = �

kk�

�− 1�k�

RK+1 � �2K + 1�!
�2k�!�2k��!

�1/2

��nala��rkCk��nclc��nblb��rk�Ck���ndld�

��
�

�− 1�la−ma+lb−mb� la k lc

− ma − � mc
�

�� lb k� ld

− mb � md
�� k k� K

− � � 0
� . �11�

The two possibilities that occur are the �nc=na ,nd=nb� and
the �nc=nb ,nd=na� cases. The first case can be regarded as
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the direct term and the second case can be regarded as the
exchange case.

The matrix element for the direct term which occurs
between the ��na ,nb ,ma ,mb ,M� and ��na ,nb ,ma� ,mb� ,M�
states is zero if one of the atoms is in an S state and the first
configuration leading to a nonzero quadrupole interaction is
the P-P case. The CK+1 coefficients are obtained from Eq.
�11� by setting nc=na, nd=nb and multiplying by −RK+1.

The exchange first-order interaction occurs between the
��na ,nb ,ma ,mb ,M� and ��nb ,na ,mb� ,ma� ,M� basis func-
tions. The exchange first-order interaction is zero if both of
the atoms are in an S state. All other configurations result in
a finite matrix element. The first term that arises is a term
with k= �la− lb� and K=2�la− lb�. The CK+1 coefficients are
obtained from Eq. �11� by setting nc=nb,nd=na and multiply-
ing by −RK+1. When one atom is in an S state �i.e., la=0� and
the other one is not, the first-order interaction can be ex-
pressed in terms of the oscillator strength, e.g.,

Vmb

�1� =
1

2R2lb+1

�− 1�lb−mb�2lb�!
�lb + mb�!�lb − mb�!

fnanb

�lb�

Enb
− Ena

. �12�

In writing Eq. �12�, the absorption oscillator strength of mul-
tipole k for a transition from na→nb has been defined as

fnanb

�k� =
2��	na

;La��rkCk�r̂���	nb
;Lb��2
Enbna

�2k + 1��2La + 1�
. �13�

where 
Enbna
=Enb

−Ena
.

The first-order interaction is the part of the atom-atom
interaction with the longest range for many pairs of states
and thus determines the asymptotic form of the molecular
wave function in those cases.

F. Second-order interaction

For the second-order interaction V�2�, the general matrix
element in uncoupled form is

Vmambma�mb�
�2� = − �

k1k1��1

�
k2k2��2

�
ncmc

ndmd

�− 1�k1�+k2�

RK1+K2+2 � �2K1� ! �2K2�!
�2k1� ! �2k1�� ! �2k2� ! �2k2��!

�1/2

�nalamanblbmb�Q−�1

k1 Q�1

k1� �nclcmcndldmd�

�
�nclcmcndldmd�Q−�2

k2 Q�2

k2� �nelemenflfmf�

Enc
+ End

− Ena
− Enb

�k1 − �1k1��1�K10��k2 − �2k2��2�K20� . �14�

Applying the Wigner-Eckart theorem and collecting terms gives

Vmambma�mb�
�2� = − �

k1k1��1

�
k2k2��2

�
ncnd,mcmd

�− 1�k1�+k2�

RK1+K2+2 � �2K1 + 1� ! �2K2 + 1�!
�2k1� ! �2k1�� ! �2k2� ! �2k2��!

�1/2 �nala��rk1Ck1��nclc��nele��rk2Ck2��nclc�
Enc

+ End
− Ena

− Enb

��nblb��rk1�Ck1���ndld��nflf��rk2�Ck2���ndld�� la k1 lc

− ma − �1 mc
�� lb k1� ld

− mb �1 md
�� lc k2 le

− mc − �2 me
�� ld k2� lf

− md �2 mf
�

�� k1 k1� K1

− �1 �1 0
�� k2 k2� K2

− �2 �2 0
� . �15�

The two possibilities that occur are the �ne=na ,nf =nb� and
the �ne=nb ,nf =na� cases. The first case can be regarded as
the direct term and the second case can be regarded as the
exchange case. There is no startling difference between the
form of the expression for direct and exchange terms, al-
though sum rules in many cases for the direct terms reduce to
sums over products of oscillator strengths.

The products of the reduced matrix elements are written
with the intermediate states �nc,nd� on the right-hand side of
the matrix element. They are written in this fashion so that in
cases where the choices of nc, nd, ne, nf cause any reduced
matrix element product to simplify to an oscillator strength,
then this simplification can be done transparently. This
makes the inclusion of the core using the techniques of
�17,22� straightforward.

G. Molecular wave functions

The zeroth-order wave function for the combined system
a-b for two like atoms a and b, in states with angular mo-
menta la and lb, with a total magnetic quantum number M
can be written in the form

��0��a,b,M� = �
ma=−la

+la

�
mb=−lb

+lb

�ma+mb,MCma,M��namanblbmb,M� ,

�16�

where �na
has an energy eigenvalue of Ena

, and �nb
has an

energy eigenvalue of Enb
. The expansion constant is Cma,M.

While the symmetry properties of the wave functions can
be used to simplify the construction of the Hamiltonian, we
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prefer to use the symmetry properties of the Hamiltonian to
construct the wave functions. This idea is implicit in the
m-scheme shell model �23�. Since the Hamiltonian com-
mutes with the available symmetry operators, diagonalizing
the Hamiltonian in a basis spanning the entire space of sym-
metry states will automatically generate wave functions that
are eigenstates of the symmetry operators.

As mentioned earlier, for na�nb one must include the
��namanbmb ,M� and ��nbmbnama ,M� states in the basis.
When the Hamiltonian is diagonalized, one finds states in
combinations

��0� = ��namanbmb,M� + ���nbmbnama,M� , �17�

where �= ±1 and can be related to the fundamental symme-
tries of the states by �= �−1�la+lb�−1�S P, and S is the total
spin, p= +1 for even �g� and p=−1 for odd �u� molecular
states. This symmetry was exploited as a check of program
correctness. The van der Waals operator is diagonal in � and
cannot connect states with different �. Rather than assuming
that the matrix element is diagonal in �, the van der Waals
coefficients were evaluated explicitly between all the pos-
sible combination of states to check that the Cn coefficients
were zero when the states had a different �. This provides a
useful diagnostic check into the details of program construc-
tion.

When one of the atoms �a� is in an S state and the other is
in a different state, one has mb=M and the zero-order wave
function is

��0��na,nb,M� = ��na0nbM,M� + ���nbMna0,M� .

�18�

The asymptotic molecular representation in cases when
both atoms are in states with nonzero angular momentum can
be defined in most cases by diagonalizing the first-order in-
teraction with the lowest multipole.

The practical implementation of the present formalism
has a strong computational flavor. All the possible
��nanbmambM� states of a given M are gathered in the basis.
This basis is then used to diagonalize the interaction with the
lowest inverse power of Rn. The entire first- and second-
order matrix blocks are then constructed between all possible
��nanbmambM� basis states, then the contractions over the
linear expansion coefficients are done to generate the
symmetry-adapted dispersion coefficients. There are only
two matrix elements that are computed, namely Eqs. �11� and
�15�. All possible sums over the indices k1, k1�, �1, and so on
are automatically done using selection rules while accumu-
lating all terms of a given K or �K1+K2�.

The computer program was tested by repeating some ear-
lier calculations of the dispersion coefficients for the Li �26�
and He �27–29� dimers. The lists of transition matrix ele-
ments used by these previous works were input into the pro-
gram developed to use the present formalism. Naturally,
these earlier dispersion coefficients were reproduced.

H. Feshbach description

There is one aspect about existing discussions of the van
der Waals interaction �12,17,26,27,30�� that is not entirely

satisfactory when both atoms are in states with ��0. The
existence of a number of different molecular states which
have the same energy raises the possibility of both atoms
experiencing an excitation to a energetically degenerate state
resulting in the energy denominator of the intermediate state
expansion being zero. Marinescu et al. �12� resorted to de-
generate perturbation theory as a means to eliminate un-
wanted zeros for the gerade and ungerade asymptotically de-
generate states for homonuclear atoms. While this procedure
is satisfactory when one of the atoms is in a spherically sym-
metric state, it did not completely resolve all the issues that
would arise if both atoms were in states with ��0.

The issues to be resolved are best discussed by reference
to a specific example, namely the case where la= lb=1. Ma-
rinescu et al. defined the zeroth-order molecular wave func-
tion for the 
 states by the diagonalization of the first-order
quadrupole interaction. This ensures that the matrix element
of the quadrupole operator connecting two distinct degener-
ate states with positive reflection symmetry about a plane
containing the nuclear axis will be zero �the state with nega-
tive reflection symmetry automatically has a matrix element
of zero with states of positive reflection symmetry�. Thus the
energetically degenerate double excitation via quadrupole
transitions can be removed from the perturbation expansion
for C10. However, the molecular representation that diagonal-
izes the quadrupole interaction does not necessarily diago-
nalize the C6 or C8 interaction. There are off-diagonal
second-order terms connecting two of the 
 states �17�. The
existence of an off-diagonal term in C6 has not even been
mentioned in some earlier work �12,26,27,30�. Diagonalizing
the C6 operator will lead to a new molecular representation
that will not necessarily diagonalize the quadrupole operator.
This raises the possibility of a zero occurring in the energy
denominator for C10 when k1=k2=k1�=k2�=2.

The way forward is to make use of the Feshbach formal-
ism which divides all possible channels into P space and Q
space �31�. Channels or states in P space are included ex-
plicitly and interactions between P-space states are therefore
included to all orders. The interactions of Q-space states with
those in P space are handled by means of an optical poten-
tial. In practical calculations, the interaction of Q space with
P space is often handled using perturbation theory. Santra
and Greene used the Feshbach partitioning in their recent
tensorial analysis of the long-range interaction between two
metastable alkaline-earth atoms �16�. Prior to this, Dalgarno
and Derevianko used similar ideas �without referencing the
Feshbach partitioning� in an analysis of the interactions be-
tween metastable rare gas atoms �32�.

This picture provides a formal setting that is well suited to
the description of van der Waals interactions. The P space
would constitute the set of asymptotically degenerate atomic
states of a particular molecular configuration. The Q space
would consist of those two-atom states used in the calcula-
tion of the van der Waals interaction. As long as the interac-
tions between the P-space states are calculated with the full
interaction �in this case the asymptotic interaction of Eq. �5��
then this partitioning eliminates the possibility of a zero in
the energy denominator for the van der Waals intermediate
state summation. Accordingly, a diagonalization of the first-
order interaction plus the second-order interaction connect-
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ing all P-space states can be formally justified.
As an example, consider again the case la= lb=1. Gener-

ating the C5, C6, C8, etc., coefficients for the two 
 states
with off-diagonal C6, etc., terms is sufficient to define long-
range interaction. The interaction matrix between these two

 states can be constructed from the diagonal and off-
diagonal Cn coefficients at any internuclear radius. Diagonal-
ization of the resulting 2�2 matrix will then give the long-
range interaction.

A Feshbach partitioning could also provide a very conve-
nient analysis tool with which we analyze the long-range
behavior of molecular configurations with additional compli-
cations. For example, the manifolds of energetically close
states that occur when the spin-orbit and/or hyperfine energy
differences are included can be regarded as comprising an
enlarged P space while those states included for the second-
order interaction can be regarded as comprising Q space.

III. SODIUM DIMER

The calculational technology is first applied to the deter-
mination of the long-range interactions between two sodium
atoms. All the dispersion coefficients were computed by first
diagonalizing the semiempirical Hamiltonian �6,33–36� in a
large mixed Laguerre-type orbital and Slater-type orbital ba-
sis set �6�. Next, various sum rules involving oscillator
strengths or reduced matrix elements were summed over the
set of physical states and pseudostates.

The calculations for sodium used the wave functions de-
scribed in an earlier calculation of dispersion coefficients of
sodium–rare-gas combinations �17,37�. These wave func-
tions represented some minor improvements on wave func-
tions used to describe the dispersion interactions of ground
state sodium �6,8�. The reduced matrix elements of the mul-
tipole operators were computed with a modified operator that
allowed for polarization corrections �6,38,39�.

The results of the stand-alone structure calculations are
lists of reduced matrix elements for all the valence states of
interest. The impact of excitations from the core were in-
cluded using a procedure outlined previously �17,22,26�.

The dispersion coefficients between the 3s state and other
low-lying states of Na listed are in Tables I–III. Also listed in
the tables are the model potential �MP� values generated by
Marinescu and co-workers �3,10� and the values generated
from many-body perturbation theory �MBPT� calculations
�25�. Positive Cn values indicate attractive interactions while
negative values indicate repulsive interactions.

As noted previously, there is better than 1% agreement
between the present and MBPT calculations �6,8� for the
ground state dimer. This agreement does not extend to the
model potential calculations. The MP calculation does not
include the impact of the core and which results in their

TABLE I. The dispersion coefficients for the 3s-3s and 3s-4s
combinations of sodium. Data by other groups are identified by the
citation in the first column �MBPT means many-body perturbation
theory �24,25� while MP means model potential �3,10��. The num-
bers in the square brackets denote powers of 10.

System � C6 �a.u.� C8 �a.u.� C10 �a.u.�

3s-3s 1.563�3� 1.159�5� 1.134�7�
3s-3s MBPT 1.564�3� 1.160�5� 1.13�7�
3s-3s MP 1.472�3� 1.119�5� 1.107�7�
3s-4s +1 2.568�4� 5.600�6� 1.688�9�
3s-4s −1 1.477�4� 4.267�6� 1.412�9�
3s-4s MP +1 2.519�4� 5.418�6� 1.650�9�
3s-4s MP −1 1.430�4� 4.146�6� 1.374�9�

TABLE II. The dispersion coefficients between the 3s-np atoms of Na2. The model potential �MP� values
are taken from the calculations of Marinescu and Dalgarno �10�. The numbers in the square brackets denote
powers of 10.

System � C3 �a.u.� C6 �a.u.� C8 �a.u.� C10 �a.u.�

3s-3p 
 +1 12.44 4.232�3� 7.338�5� 1.109�8�
3s-3p 
 −1 −12.44 4.232�3� 2.162�6� 3.350�8�
3s-3p � +1 −6.221 2.732�3� 2.198�5� 2.167�7�
3s-3p � −1 6.221 2.732�3� 8.838�4� 1.871�6�
3s-3p 
 MP +1 12.26 4.094�3� 7.025�5�
3s-3p 
 MP −1 −12.26 4.094�3� 2.120�6�
3s-3p � MP +1 −6.128 2.636�3� 2.171�5�
3s-3p � MP −1 6.128 2.636�3� 8.559�4�
3s-4p 
 +1 0.0929 4.923�4� 4.266�7� 2.342�10�
3s-4p 
 −1 −0.0929 4.923�4� 4.473�7� 2.389�10�
3s-4p � +1 −0.0464 2.667�4� 1.491�6� 3.472�8�
3s-4p � −1 0.0464 2.667�4� 1.641�6� 3.217�8�
3s-4p 
 MP +1 0.0843 4.806�4� 8.368�7�
3s-4p 
 MP −1 −0.0843 4.806�4� 8.558�7�
3s-4p � MP +1 −0.0422 2.602�4� 1.548�7�
3s-4p � MP −1 0.0422 2.602�4� 1.558�7�
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values being too small by amounts between 2% and 5% �6�.
The dispersion coefficients for the 3s-4s case listed in

Table I once again result in the present calculations giving
dispersion coefficients that are about 2%–3% larger than the
MP values. The likely reason for the slight difference is the
omission of the core from the MP calculation.

The dispersion coefficients for the 3s-3p and 3s-4p con-
figurations of the sodium dimer are listed in Table II. The
dispersion coefficients for the 3s-3p configuration are gener-
ally a couple of percent larger than the MP results of Mari-
nescu and Dalgarno �10�, presumably due to the present in-
clusion of the core. This level of agreement does not occur
for the 3s-4p configuration. The present dispersion coeffi-
cients are about one-half the size of the MP results for the 

symmetry. It should be noted that major discrepancies with
MP dispersion coefficients also occurred for the 2s-3p con-
figuration of lithium �26�.

The dispersion coefficients between the 3s and 3d states
of two sodium atoms are given in Table III. The only previ-
ous calculation that had been done was the MP calculation
which only reported C6 values. Once again the inclusion of
the core gave C6 values slightly larger than the MP values.

There are also large discrepancies with the dispersion co-
efficients of Marinescu �12� for the 3p-3p configuration
listed in Table IV. While the dispersion coefficients for the
two � symmetries and the 
 symmetry agree within a few
percent, this is not the case for the three states of 
 symme-
try. The wave functions for the 
1 states change sign upon
reflection through a plane containing the two nuclei, while
the 
2 and 
3 states do not change sign. The dispersion
interaction for the 
2 and 
3 states is most properly deter-
mined by diagonalizing the 2�2 interaction matrix at each
internuclear separation.

There is a big difference in C6 for the 
3 state, the present
value of −9965 a.u. being much more negative than the
value of Marinescu. A similar discrepancy existed for the
same molecular state in the Li dimer �12�. Further, there also
exist orders of magnitude discrepancies in C8 for the 
1 and

3 states. It has been noted that two of the formulas used by

Marinescu to calculate C8 had mistakes �26�. Given that the
program used to process the file of transition matrix elements
into dispersion coefficients has previously been validated
against independent calculation, the most likely source of
error lies in the Marinescu calculation.

IV. MAGNESIUM DIMER

The alkaline-earth dimers have weakly bound van der
Waals ground states and strongly bound excited states. This
causes the spectral transitions to appear as broad continua
that are shifted to the red of the corresponding atom lines.
Such transitions are well suited to laser applications �44�. In
addition there has been a good deal of interest in the
alkaline-earth dimers due to cold atom applications �45–47�.

TABLE III. The dispersion coefficients for the 3s-3d state of the sodium dimer. The model potential �MP�
values are taken from the calculations of Marinescu and co-workers �10�. The numbers in the square brackets
denote powers of 10.

System � C5 �a.u.� C6 �a.u.� C8 �a.u.� C10 �a.u.�

3s-3d 
 +1 −588.4 4.141�4� 1.996�7� 9.648�9�
3s-3d 
 −1 588.4 1.919�4� 1.552�7� 8.481�9�
3s-3d � +1 393.3 1.891�4� 4.358�6� 5.099�8�
3s-3d � −1 −393.3 3.371�4� 6.019�6� 6.592�8�
3s-3d 
 +1 −98.07 1.805�4� −8.159�5� −5.722�6�
3s-3d 
 −1 98.07 1.065�4� −5.979�5� −2.202�6�
3s-3d 
 MP +1 −578.3 4.059�4�
3s-3d 
 MP −1 578.3 1.867�4�
3s-3d � MP +1 385.5 1.842�4�
3s-3d � MP −1 −385.5 3.303�4�
3s-3d 
 MP +1 −96.4 1.766�4�
3s-3d 
 MP −1 96.4 1.035�4�

TABLE IV. The dispersion coefficients for the 3p-3p state of the
sodium dimer. The model potential �MP� values are taken from the
calculations of Marinescu �12�. The 
2-
3 row gives the off-
diagonal dispersion coefficients between the two states. The num-
bers in the square brackets denote powers of 10.

Symmetries C5 �a.u.� C6 �a.u.� C8 �a.u.� C10 �a.u.�


1 0 4.337�3� −4.880�4� −9.200�6�

1 MP 0 4.270�3� −5.181�7�

2 0 1.748�3� 9.739�6� 7.549�8�

2 MP 0 1.816�3� 9.236�6�

3 −2.330�3� −9.965�3� 1.098�6� 3.702�9�

3 MP −2.289�3� −396.6 1.507�6�

2-
3 0 1.064�3� −3.750�6� −3.076�9�
�1 1.553�3� 5.504�3� 3.234�6� −6.970�8�
�1 MP 1.526�3� 5.431�3� 3.194�6�
�2 0 1.831�3� 1.029�7� 6.472�8�
�2 MP 0 1.910�3� 1.015�7�

 −388.3 2.501�3� 4.067�6� −4.824�8�

 MP −381.4 2.509�3� 4.001�6�
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However, there has been comparatively little effort in
characterizing the potential curves of the excited states of the
alkaline-earth dimers despite the many determinations of the
potential surface for the ground states. The ground state po-
tential of the magnesium dimer has been the subject of many
investigations �44,48–50�. There have been few calculations
of the excited states �44� and there has only been a single
calculation of the dispersion coefficients for the excited
states �43�. The present calculations of the Mg2 dispersion
coefficients will permit an accurate description of the long-
range behavior of the most important excited states.

A. Structure of the ground and excited states

The configuration interaction �CI� calculations that gener-
ated the Mg physical states and the L2 pseudostates are very
similar to those used to determine the dispersion parameters

of the Mg ground state and the metastable 3Po �6,22,35�. The
major difference between present calculations and the earlier
calculations is that the orbital basis is somewhat larger. There
were a total of 156 valence orbitals with a maximum orbital
angular momentum of �=6. The dimensions of the CI basis
for the different symmetries varied from 1500 to 4800.

The use of such a large orbital basis resulted in wave
functions and energies for the low-lying states that were
close to convergence. The effective Hamiltonian for the two
valence electrons used a Hartree-Fock wave function for the
Mg ground state. The direct and exchange interactions of the
valence electrons with the core were calculated exactly. A
semiempirical polarization potential was also added to the
core potential. This potential included both one-body and
two-body terms. The cutoff parameters of the polarization
potential were fixed by tuning low-lying states of Mg+ to the
experimental energies. Some additional small adjustments to
the cutoff parameters were made for some symmetries by

TABLE V. Theoretical and experimental energy levels �in hartree� of some of the low-lying states of the Mg atom. The energies are given
relative to the energy of the ionized core. The experimental energies �taken from �40,41�� for the doublet states are averages with the usual
�2J+1� weighting factors. The dipole, quadrupole, and tensor polarizabilities �for dipole excitations� are also listed. Other calculations
include MBPT calculations �42� and TDGI calculations �43�. The numbers in the square brackets denote powers of 10.

Energy �a.u.� �1 �a.u.� �1,2LL �a.u.� �2 �a.u.�

State Theory Experimental Present Other Present Other Present Other

3s2 1Se −0.833522 −0.833533 71.35 71.33 MBPT, 74.0 TDGI 811.4 812

MBPT

3s3p 1Po −0.673789 −0.673824 293.1 311 TDGI −111.4 −134.0 6.946�3�
TDGI

3s4s 1Se −0.635564 −0.635314 1.488�3� 1.131�3� TDGI 2.371�5�
3s3d 1De −0.622101 −0.622102 1.236�3� −833.6 1.030�4�
3s4p 1Po −0.608655 −0.608690

3s3p 3Po −0.733629 −0.733788 101.5 90.7 TDGI −14.15 −19.64 1.445�3�
TDGI

3s4s 3Se −0.645827 −0.645821 1.431�3� 1.437�3� TDGI 1.035�5�
3s3d 3De −0.615014 −0.615021 −3.200�4� 3.276�4� 9.661�4�
3s4p 3Po −0.615609 −0.615519

TABLE VI. Theoretical and experimental values of the oscillator strengths for selected transitions of the
Mg atom. The other theoretical f values were taken from the CI calculation of Moccia and Spizzo �51�, the
TDGI calculation �43� and the MCDF compilation �52�. The experimental data are taken from various
sources.

Other theory

Transition Present CI CI TDGI MCDF Experiment

3s2 1Se→3s3p 1Po 1.732 1.761 1.766 1.719 1.75�8� �Ref. �53��
3s2 1Se→3s4p 1Po 0.1058 0.1154 0.187 0.1136 0.1070�19� �Ref. �54��
3s3p 1Po→3s4s 1Se 0.1523 0.1553 0.173 0.1555 0.15�1� �Ref. �55��
3s3p 1Po→3s3d 1De 0.2473 0.2069 0.337 0.247 0.24�2� �Ref. �55��
3s3p 3Po→3s4s 3Se 0.1384 0.1354 0.136 0.137 0.139�3� �Ref. �56��, 0.135�12� �Ref. �57��,

0.117�9� �Ref. �58��
3s3p 3Po→3s3d 3De 0.6249 0.6383 0.625 0.599 0.55�4� �Ref. �53��, 0.603�8� �Ref. �57��,
3s3p 3Po→3p2 3Pe 0.6173 0.6336 0.62�4� �Ref. �59��
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tuning the Mg binding energies to experiment.
The ability of the present semiempirical CI calculation to

reproduce the low-lying spectrum can be assessed from
Table V. The largest discrepancies occur for the 2Po symme-
try and do not exceed 1.5�10−4 hartree.

A further test of integrity of the CI calculations comes
from the tabulation of oscillator strengths in Table VI. Be-

sides the present calculation, data from three other system-
atic calculations are included. These are the valence only CI
calculations of Moccia and Spizzo �51�, the time-dependent
gauge-invariant �TDGI� calculations of Merawa et al. �43�,
and finally the very large multiconfiguration Dirac-Fock cal-
culations of Froese-Fischer �52� which include core-valence
correlation �the oscillator strengths quoted from this tabula-
tion are LS values averaged over the different J levels�. All
the data quoted from these works are derived from transition
matrix elements computed using the length form of the mul-
tipole operators.

The present oscillator strengths agree with the MCDF to
any accuracy of better than 0.025 for all of the transitions
listed in the table. The TDGI calculations clearly give oscil-
lator strengths of poorer accuracy than any of the other cal-
culations. The level of approximations made in the TDGI
calculation are greater than in the present CI calculation.

The definitions of the scalar and tensor polarizabilities for
general states have been given in �26� and do not need to be
repeated here. The static dipole and quadrupole polarizabil-
ities are given in Table V. In addition, the tensor part of the
polarizability for dipole excitations is also given. The polar-
izabilities for the 3s2 1Se could hardly be in any better agree-
ment with the MBPT values of Porsev and Derevianko �42�.
The TDGI value for the ground state is about 3% larger than

TABLE VII. The dispersion coefficients for the 3s2-3sns com-
binations of magnesium. Values of C6 for all states are from TDGI
calculations �43� while MBPT results �42� are given for the ground
state. The numbers in the square brackets denote powers of 10.

System � C6 �a.u.� C8 �a.u.� C10 �a.u.�

3s2-3s2 629.4 4.151�4� 2.809�6�
3s2-3s2 MBPT 627 4.15�4� 2.76�6�
3s2-3s2 TDGI 674

3s2-3s4s 1Se +1 7.263�3� 1.573�6� 3.995�8�
3s2-3s4s 1Se −1 5.584�3� 1.334�6� 3.615�8�
3s2-3s4s 1Se TDGI +1 7.493�3�
3s2-3s4s 1Se TDGI −1 7.184�3�
3s2-3s4s 3Se 5.409�3� 9.601�5� 2.078�8�
3s2-3s4s 3Se TDGI 5.686�3�

TABLE VIII. The dispersion coefficients for the 3s2-3snl combinations of magnesium. Data by other
groups are identified by the citation in the first column. The numbers in the square brackets denote powers of
10.

3s3p states

System � C3 �a.u.� C6 �a.u.� C8 �a.u.� C10 �a.u.�

3s2-3s3p 1Po 
 +1 10.84 2.292�3� 4.161�5� 5.471�7�
TDGI �Ref. �43�� +1 1.797�3�
3s2-3s3p 1Po 
 −1 −10.84 2.292�3� 6.664�5� 9.325�7�
TDGI �Ref. �43�� −1 1.797�3�
3s2-3s3p 1Po � +1 −5.420 1.395�3� 1.034�5� 6.408�6�
TDGI �Ref. �43�� +1 947

3s2-3s3p 1Po � −1 5.420 1.395�3� 7.730�4� 3.087�6�
TDGI �Ref. �43�� −1 947

3s2-3s3p 3Po 
 859.7 1.612�5� 1.609�7�
TDGI �Ref. �43�� 789

3s2-3s3p 3Po � 753.6 3.646�4� 2.043�6�
TDGI �Ref. �43�� 534

3s3d states

System � C5 �a.u.� C6 �a.u.� C8 �a.u.� C10 �a.u.�

3s2-3s3d 1De 
 +1 −416.5 4.889�3� 2.357�6� 9.252�8�
3s2-3s3d 1De 
 −1 416.5 4.170�3� 2.140�6� 8.417�8�
3s2-3s3d 1De � +1 277.7 3.819�3� 7.765�5� 6.388�7�
3s2-3s3d 1De � −1 −277.7 4.298�3� 8.646�5� 8.487�7�
3s2-3s3d 1De
 +1 −69.42 2.765�3� −1.961�4� 5.234�5�
3s2-3s3d 1De 
 −1 69.42 2.525�3� −2.860�4� −1.892�6�
3s2-3s3d 3De 
 8.923�3� 4.697�6� 1.924�9�
3s2-3s3d 3De � 7.851�3� 1.605�6� 2.762�8�
3s2-3s3d 3De 
 4.636�3� −1.168�5� −3.245�7�
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the present value of 71.35. The TDGI dipole polarizabilities
are about 5%–10% different from the present set of polariz-
abilities. The present list of polarizabilities should be re-
garded as superseding the TDGI values given that the TDGI
oscillator strengths and energy differences are less accurate
than the present CI values.

B. Dispersion coefficients

The only previous calculation of the dispersion coeffi-
cients for the excited states of the Mg dimer was the TDGI
method of Merawa et al. �43� and here the calculation was
limited to only the C6 parameter. All the dispersion coeffi-
cients reported here include core corrections which generally
about to a couple of percent.

Table VII gives the dispersion coefficients between the
3s2 ground states and excited states of 1Se and 3Se symme-
tries. For the 3s2-3s2 interaction the agreement between the
present dispersion coefficients and the MBPT values could
hardly be better. The two C6 values are within 0.5%, the C8
values are within 0.1%, while there is a 1.5% difference for
C10. The TDGI calculation gives a value of C6 that is 7%
larger than the present value. The dispersion coefficients for
the 3s2 1Se-3s4s 3Se states were evaluated using the proce-
dures developed for heteronuclear atomic combinations �17�.
All dispersion coefficients between states with different spins
were evaluated using the heteronuclear program.

Tables VII and VIII list the complete set of dispersion
coefficients for the ground state interacting with the
3s3p 1Po, 3s3p 3Po, 3s3d 1De, 3s3d 3De, 3s4s 1Se, and
3s4s 3Se states. Tables IX lists dispersion coefficients con-
necting the 3s3p 1Po and 3s3p 3Po states.

One noticeable feature from Tables VII and VIII are the
differences of up to 40% with the TDGI calculations. The
differences most likely result from the limitations in the
TDGI description of the underlying atomic structure. The
dispersion coefficients with the 1Po are generally larger than
those with the 3Po levels. This is consistent with the respec-
tive sizes of the dipole and quadrupole polarizabilities given
in Table V. The relative size of the C3 and C6 coefficients for
the 3s2 1Se-3s3p 1Po potentials leads to the C3 /R3 being
larger than the C6 /R6 term for R�6a0.

The C6 dispersion coefficients for the 3s2-3s3p 3Po con-
figuration are not much larger than that of the ground state
dimer. The 
 state value of 859.7 a.u. is 30% larger than the
ground state value while the � value is only 20% larger than
the ground state value. This has an impact on the photoasso-
ciation spectroscopy of the weak transition between the 1S0

o

and 3P1
o states �60�.

Table IX lists the dispersion coefficients between the 3s3p
configurations. The wave functions for the 
1 states change
sign upon reflection through a plane containing the two nu-
clei, while the 
2 and 
3 states do not change sign. It should
be noted that there are off-diagonal terms connecting the two
� states for the dispersion interaction between the 3s3p 1Po

and 3s3p 3Po states. However, the off-diagonal terms vanish
if the two P states are identical, e.g., the 1Po-1Po and 3Po-3Po

cases.

V. CONCLUSIONS

A systematic approach to the determination of the disper-
sion parameters for two homonuclear atoms has been devel-

oped. The determination of the van der Waals coefficients in
the homonuclear case for almost any two lying atomic states
has been reduced to a process that is purely mechanical. One
simply generates files containing arrays of state and reduced
matrix element information, and then feeds them into the
dispersion coefficient program. The method has been applied
to generate the dispersion coefficients for the lowest molecu-
lar states of the sodium and magnesium dimers. The values
for sodium generally agree with the model potential values
of Marinescu and co-workers �3,10� with the exception of the
3s-4p and 3p-3p states. It should be noted that an earlier
investigation of homonuclear Li �26� resulted in many dis-
crepancies with the dispersion coefficients of Marinescu et
al. �3,10� for the more highly excited states. The values for
magnesium show differences of up to 40% with the TDGI
values of Merawa et al. �43�. These differences arise as a
result of the approximations inherent in the TDGI approach.

The Feshbach partitioning �16,31� provides guidance
about how to handle the cases when both atoms are in states
with nonzero angular momentum. For example, the first-
order quadrupole interaction defines the molecular represen-

TABLE IX. The dispersion coefficients for the 3s3p-3s3p Mg
configurations. The 
2-
3 row gives the off-diagonal dispersion
coefficients between the two states. The �1-�2 row gives the off-
diagonal dispersion coefficients in cases where the off-diagonal
terms are nonzero. The numbers in the square brackets denote pow-
ers of 10.

System C5 �a.u.� C6 �a.u.� C8 �a.u.� C10 �a.u.�

3Po-3Po manifold


1 0 2.780�3� 8.725�4� 1.082�6�

2 0 −1.094�3� 8.937�5� 3.180�8�

3 −1.244�3� −1.234�4� 1.729�6� 6.004�8�

2 /
3 0 2.229�3� −9.492�5� −3.657�8�
�1 829.2 3.286�3� 1.009�6� 6.528�7�
�2 0 −1.307�3� 1.156�6� 2.939�8�

 −207.3 482.7 1.885�5� 6.083�7�

1Po-3Po manifold


1 0 9.287�3� 4.394�4� 1.641�6�

2 0 1.312�3� 6.781�5� 7.902�7�

3 −890.0 1.722�4� 6.803�5� 2.206�8�

2 /
3 0 −28.70 −4.878�5� −1.486�8�
�1 593.4 1.931�4� 4.751�5� 1.586�7�
�2 0 3.321�3� 7.907�5� 7.824�7�
�1 /�2 0 5.813�3� 2.567�5� 9.023�6�

 −148.3 1.292�3� 2.221�5� −1.370�6�

3Po-3Po manifold


1 0 898.4 2.605�4� 8.116�5�

2 0 1.005�3� 1.407�5� 1.816�7�

3 −636.9 1.144�3� 2.827�5� 5.153�7�

2 /
3 0 −129.1 −1.592�5� −2.988�7�
�1 424.6 1.016�3� 1.746�5� 7.357�6�
�2 0 1.046�3� 1.876�5� 1.796�7�

 −106.1 913.8 3.091�4� 1.270�6�
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tation at long distances in the case of two atoms with la= lb
=1. As the atoms approach, the off-diagonal terms in the
second-order interaction can cause mixing of some of the
molecular representations. One can avoid the possibilities of
a double excitation to degenerate states in the dispersion in-
teraction by diagonalizing the full first and second interac-
tions at various internuclear distances. The minimum infor-
mation needed to achieve this is a specification of the
diagonal and off-diagonal dispersion coefficients.

At the moment there is very little information available
for the long-range interactions of alkaline-earth excited states
with other atoms although some information exists for the
metastable triplet states �16,61,62�. The present dispersion
coefficients could be used to extend existing tables of ab
initio potential curves �44� to infinite nuclear separation. The
only previous dispersion coefficients come from the TDGI
calculations of Merawa et al. �43,63� for combinations of Mg
and Ca atoms. The errors of up to 40% in the TDGI disper-
sion coefficients for the Mg dimer have obvious implications
about the accuracy of their results for the Ca-Mg and Ca-Ca

dimers. Generating sets of dispersion coefficients for the
other group II and IIB atoms of the periodic table �e.g., Ca or
Zn� might be tedious, but it would not be difficult. The major
computational task would be simply running the atomic
structure programs for all the necessary symmetries, and then
assembling the lists of reduced matrix elements into one co-
herent data file.

Some qualifications are in order. All considerations of
electron spin have been omitted from this paper. The as-
sumption has been made that the electron-electron operator
does not change the overall spin state of the two atoms. So
the van der Waals interactions between two atoms can be
calculated without any reference to the spin state. Second,
the impact of the spin-orbit interaction has been ignored.
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