Fixed-Parameter Algorithms for Kemeny Scores

Nadja Betzler1, Michael R. Fellows2, Jong Guo1,3, Rolf Niedermeier4, and Frances A. Rosamond2,4

1 Institut für Informatik, Friedrich-Schiller-Universität Jena
 Ernst-Abbe-Platz 2, D-07743 Jena, Germany.
 {betzler,guo,niedermeir}@minet.uni-jena.de
2 PC Research Unit, Office of DVC (Research), University of Newcastle,
 Callaghan, NSW 2308, Australia.
 {michael.fellows,frances.rosamond}@newcastle.edu.au

Abstract. The Kemeny Score problem is central to many applications in
the context of rank aggregation. Given a set of permutations (votes)
over a set of candidates, one searches for a “consensus permutation”
that is “closest” to the given set of permutations. Computing an opti-
nal consensus permutation is NP-hard. We provide first, encouraging
fixed-parameter tractability results for computing optimal scores (that
is, the overall distance of an optimal consensus permutation). Our fixed-
parameter algorithms employ the parameters “score of the consensus”,
“maximum distance between two input permutations”, and “number of
candidates”. We extend our results to votes with ties and incomplete
votes, thus, in both cases having no longer permutations as input.

1 Introduction

To aggregate inconsistent information does not only appear in classical voting
scenarios but also in the context of meta search engines and many other applica-
tions [11,9,1,8]. In some sense, herein one always deals with consensus problems
where one wants to find a solution to various “input demands” such that these
demands are met as well as possible. Naturally, contradicting demands cannot
be fulfilled at the same time. Hence, the consensus solution has to provide a
balance between opposing requirements. The concept of Kemeny consensus is
among the most classical and important research topics in this context. In this
paper, we study new algorithmic approaches based on parameterized complexity
analysis [10,12,14] for computing Kemeny scores and, thus, Kemeny consensus
solutions. To describe our results, we start with introducing Kemeny elections.

Kemeny’s voting scheme goes back to the year 1959. It can be described as
follows. An election \((V,C)\) consists of a set \(V\) of \(n\) votes and a set \(C\) of

\footnote{Supported by the DFG, research project DARE, GU 1023/1.}
\footnote{Supported by the Australian Research Council. Work done while staying in Jena as
a recipient (MF) of the Humboldt research award of the Alexander von Humboldt
foundation, Bonn, Germany.}
\footnote{Supported by the DFG, Emmy Noether research group PIAF, NI 369/4.}
m candidates. A vote is a preference list of the candidates, that is, for each voter the candidates are ordered according to preference. For instance, in case of three candidates a, b, c, the order $c > b > a$ would mean that candidate c is the best-liked one and candidate a is the least-liked one for this voter.\(^3\) A “Kemeny consensus” is a preference list that is “closest” to the preference lists of the voters: For each pair of votes p, q, the so-called Kendall-Tau distance (KT-distance for short) between p and q is defined as $\text{dist}(p, q) = \sum_{\{c, d\} \subseteq C} d_{p,q}(c, d)$, where the sum is taken over all unordered pairs $\{c, d\}$ of candidates, and $d_{p,q}(c, d)$ is 0 if p and q rank c and d in the same order, and 1 otherwise. The KT-distance is a metric [11]. The score of a preference list ℓ with respect to an election (V, C) is defined as $\sum_{\ell \in \mathcal{E}} \text{dist}(\ell, v)$. A preference list ℓ with the minimum score is called Kemeny consensus of (V, C) and its score $\min_{\ell \in \mathcal{E}} \sum_{v \in \mathcal{V}} \text{dist}(\ell, v)$ is the Kemeny score of (V, C). The problem considered in this work is as follows:

Kemeny Score

Input: An election (V, C) and a positive integer k.

Question: Is the Kemeny score of (V, C) at most k?

Clearly, in applications we are mostly interested in computing a Kemeny consensus of a given election. All our algorithms that decide the KEMENNY SCORE problem actually provide a corresponding Kemeny consensus.

State of the art. We summarize the state of the art concerning the computational complexity of KEMENNY SCORE. Before doing that, let us only mention in passing that the computation of the KT-distance between two votes is also known as “counting inversions” in the literature and, for m candidates, can be accomplished by divide and conquer in $O(m \log m)$ time. Bartholdi et al. [3] showed that KEMENNY SCORE is NP-complete, and it remains so even when restricted to instances with only three votes [11,2,1,4,7].\(^4\) Given the computational hardness of KEMENNY SCORE on the one side and its practical relevance on the other side, polynomial-time approximation algorithms have been studied. Thus, the Kemeny score can now be approximated to a factor of $8/5$ by a deterministic algorithm [17] and to a factor of $11/7$ by a randomized algorithm [1]. Conitzer, Davenport, and Kalagnanam [9,8] performed computational studies for the efficient exact computation of a Kemeny consensus, using heuristic approaches such as greedy and branch and bound. Finally, note that Hemaspaandra et al. [13] provided further, exact classifications of the computational complexity of Kemeny elections.

Our results. As pointed out by Conitzer et al. [8], for obvious reasons approximate solutions for election problems such as KEMENNY SCORE may be of limited interest. Hence, exact solutions are of particular interest in this context. Given the NP-completeness of the problem, however, it seems inevitable to live with exponential-time algorithms for solving KEMENNY SCORE. Fortunately, parameterized complexity analysis as pioneered by Downey and Fellows [10,12,14]

\(^3\) Some definitions also allow ties between candidates—we deal with this later.

\(^4\) Indeed, Dwork et al. [11] gave a reduction from FEEDBACK ARC SET in tournaments, which later was shown to be NP-complete [2,1,4,7].
seems a fruitful approach here. This will be shown by positive results based on three natural parameterizations. Before that, note that studying the parameter "number of votes" is pointless because, as mentioned before, the problem is already NP-complete for only three votes. First of all, using the Kemeny score k itself as the parameter, we derive an algorithm solving Kemeny Score in $O(1.53^k + k^2n)$ time, where $n := |V|$ and $m := |C|$. This algorithm is based on a problem kernelization and a depth-bounded search tree. Further, we consider a structural parameterization by studying the parameter "maximum KT-distance" between any two input votes". Note that in application scenarios such as meta search engines small d-values may be plausible. We show that Kemeny Score can be solved in $O((2d+1)! \cdot d \log d \cdot m \cdot n)$ time by a dynamic programming approach. Eventually, note that by trying all possible permutations of the m candidates, we can trivially attain an efficient algorithm if m is very small. The corresponding combinatorial explosion in the parameter m is fairly large, though. Using dynamic programming, we can improve this to an algorithm running in $O(2^m \cdot m^2 \cdot n)$ time. Finally, we extend our findings to the cases where ties within votes are allowed and to incomplete votes where not all candidates are ranked. Due to the lack of space, we deferred several proofs to a clearly marked Appendix and omitted few details.

2 Preliminaries

We refer to the introductory section for some basic definitions concerning (Kemeny) elections. Almost all further concepts are introduced where needed. Hence, there are only two small details to describe here. Let the position of a candidate a in a vote v be the number of candidates that are better than a in v. That is, the leftmost (and best) candidate in v has position 0 and the rightmost has position $m - 1$. Let $pos_v(a)$ denote the position of candidate a in v. Moreover, we say that two candidates a and b form a dirty pair if in V there is one vote with $a > b$ and an other vote with $b > a$.

Further, we briefly introduce the relevant notions of parameterized complexity theory [10,12,14]. Parameterized algorithmics aims at a multivariate (at least two-dimensional) complexity analysis of problems. This is done by studying relevant problem parameters and their influence on the computational complexity of problems. The hope lies in accepting the seemingly inevitable combinatorial explosion for NP-hard problems, but to confine it to the parameter. Hence, the decisive question is whether a given parameterized problem is fixed-parameter tractable (FPT) with respect to the parameter, say k. In other words, here we ask for the existence of a solving algorithm with running time $f(k) \cdot poly(n,m)$ for some computational function f. A core tool in the development of fixed-parameter algorithms is polynomial-time preprocessing by data reduction rules, often yielding a kernelization. Herein, the goal is, given any problem instance x with parameter k, to transform it in polynomial time into a new instance x' with parameter k' such that the size of x' is bounded from above by some function only depending on k, $k' \leq k$, and (x,k) is a yes-instance if and only if (x', k') is
a yes-instance. We also employ search trees for our fixed-parameter algorithms. Search tree algorithms work in a recursive manner. The number of recursion calls is the number of nodes in the according tree. This number is governed by linear recurrences with constant coefficients. It is well known how to solve these [14]. If the algorithm solves a problem of size n and calls itself recursively for problems of sizes $n - d_1, \ldots, n - d_l$, then (d_1, \ldots, d_l) is called the branching vector of this recursion. It corresponds to the recurrence $T_n = T_{n - d_1} + \cdots + T_{n - d_l}$, for the asymptotic size T_n of the overall search tree.

3 Parameterization by the Kemeny Score

We present a kernelization and a search tree algorithm for KEMENY SCORE. The following lemma, whose correctness follows directly from the Extended Condorcet criterion [16], is used for deriving the problem kernel and the search tree.

Lemma 1. Let a and b be two candidates in C. If $a > b$ in all votes $v \in V$, then every Kemeny consensus has $a > b$.

3.1 Problem Kernel

When applied to an input instance of KEMENY SCORE, the following polynomial-time executable data reduction rules yield an election with at most $2k$ candidates and at most $2k$ votes. Note that, if we use a preference list over a subset of the candidates to describe a vote, then we mean that the remaining candidates are positioned arbitrarily in this vote. We apply the following data reduction rule to shrink the number of candidates in a given election (V, C).

Rule 1. Delete all "non-dirty" candidates, that is, candidates that are in no dirty pair.

Lemma 2. Rule 1 is sound and can be carried out in $O(m^2n)$ time.

Lemma 3. After having exhaustively applied Rule 1, in a yes-instance there are at most $2k$ candidates.

Next, we apply a data reduction rule to get rid of too many identical votes.

Rule 2. If there are more than k votes in V identical to a preference list l, then return "yes" if the score of l is at most k; otherwise, return "no".

The soundness of Rule 2 is obvious. With almost the same binary matrix as in the proof of Lemma 2, Rule 2 can be carried out in $O(mn)$ time.

Lemma 4. Rule 2 is sound and works in $O(mn)$ time.

The bound on the number of votes is achieved as follows.

Lemma 5. After having exhaustively applied Rule 1 and Rule 2, in a yes-instance $(|V, C), k)$ of KEMENY SCORE there are at most $2k$ votes.

Summarizing Lemmas 3 and 5, we can state the following:

Theorem 1. KEMENY SCORE admits a problem kernel with at most $2k$ votes over at most $2k$ candidates. It can be computed in $O(m^2n)$ time.
3.2 Search Tree Algorithm

For the description of the search tree algorithm, we need the following definition: Three candidates \(a, b, c\) form a dirty triple if they form at least two dirty pairs.

The search tree algorithm first enumerates all dirty pairs of the given election \((V, C)\) and then branches based on the dirty triples. At a search tree node, in each case of the branching, an order of the candidates involved in the dirty triples processed at this node is fixed and maintained in a set. This order represents the relative positioning of these candidates in the Kemeny consensus sought for. Then, the parameter is decreased according to this order. Since every order of two candidates in a dirty pair decreases the parameter at least by one, the height of the search tree is upper-bounded by the parameter.

Next, we describe the details of the branching. At each node of the search tree, we store two types of information:

- The set of dirty pairs that have not been processed by ancestor nodes are stored in a set \(D\).
- The information about the orders of candidates that have already been determined when reaching the node is stored in a set \(L\). That is, for every pair of candidates whose order is already fixed we store this order in \(L\).

For any pair of candidates \(\{a, b\}\) the order \(a > b\) is implied by \(L\) if there is a subset of ordered pairs \(\{(c_1, c_2), (c_2, c_3), \ldots, (c_{i-1}, c_i)\}\) in \(L\) which can be concatenated such that we have \(a > c_1 > \ldots > c_i > b\). To add the order of a "new" pair of candidates, for example \(a > b\), to \(L\), we must check if this is consistent with \(L\), that is, \(L\) does not imply \(b > a\).

At the root of the search tree, \(D\) contains all dirty pairs occurring in \((V, C)\). For all non-dirty pairs, their relative order in an optimal Kemeny ranking can be determined using Lemma 1. These orders are stored in \(L\). At a search tree node, we distinguish three cases:

Case 1. If there is a dirty triple \(\{a, b, c\}\) forming three dirty pairs contained in \(D\), namely, \(\{a, b\}, \{b, c\}, \{a, c\}\) \(\in D\), then remove these three pairs from \(D\). Branch into all six possible orders of \(a, b, c\). In each subcase, if the corresponding order is not consistent with \(L\), discard this subcase, otherwise, add the corresponding orders to \(L\) and decrease the parameter according to this subcase. The worst-case branching vector of this case is \(\{3, 4, 4, 5, 5, 6\}\), giving a branching number 1.52. To see this, note that an NP-hard instance consists of at least three votes. Thus, for every dirty pair \(\{c, c'\}\), if there is only one vote with \(c > c'\) (or \(c' > c\)), then there are at least two votes with \(c' > c\) (or \(c > c'\)). A simple calculation gives then the branching vector.

Case 2. If Case 1 does not apply and there is a dirty triple \(\{a, b, c\}\), then \(a, b, c\) form exactly two dirty pairs contained in \(D\), say \(\{a, b\} \in D\) and \(\{b, c\} \in D\). Remove \(\{a, b\}\) and \(\{b, c\}\) from \(D\). As \(\{a, c\}\) is not a dirty pair, its order is determined by \(L\). Hence, we have to distinguish the following two subcases.

- \(b > a > c\),
- $a > b > c$, and
- $a > c > b$.

For each of these subcases, we add the pairwise orders induced by them into L if they are consistent for all three pairs and discard the subcase, otherwise. The worst-case branching vector here is $(3, 3, 2)$, giving a branching number 1.53.

If $c > a$ is in L, then we also get the branching vector $(3, 3, 2)$ by branching into the following three further subcases:

- $b > c > a$.
- $c > b > a$, and
- $c > a > b$.

Case 3. If there is no dirty triple but at least one dirty pair (a, b) in D, then without branching decrease the parameter by one. If there is no implied order of a and b in L, then add an order between a and b to L that occurs in at least half of the given votes; otherwise, we add the implied order to L.

The search tree algorithm outputs "yes" if it arrives at a node with $D = \emptyset$ and a parameter value $k \geq 0$; otherwise, it outputs "no". Observe that a Kemeny consensus is then the full order implied by L at a node with $D = \emptyset$.

Combining this search tree algorithm with the kernelization given in Section 3.1, we arrive at the main theorem of this section.

Theorem 2. KEMENY SCORE can be solved in $O(1.53^k + m^2n)$ time, where k denotes the Kemeny score of the given election.

Observe that the search tree algorithm also works for instances in which the votes are weighted by positive integers. If the votes are weighted by arbitrary positive weights, we can use the dynamic programming algorithm that is described in the following section.

4 Parameterization by the Maximum KT-distance

Since the Kemeny score of some instances might be quite large, we consider a further parameterization of KEMENY SCORE, with the maximum KT-distance d between any two given votes as the parameter. Formally, $d := \max_{p, q \in V} \{\text{dist}(p, q)\}$.

We describe a dynamic programming fixed-parameter algorithm for this parameterization. To this end, we need the following definitions:

A **block** of size s with start position p denotes the set of candidates a satisfying $p \leq \text{pos}_a(a) \leq p + s - 1$ for at least one $v \in V$. By $\text{block}(p)$ we denote a block of size $d + 1$ with start position p. With a **subvote** $v_{C'}$ of a vote v restricted to a subset $C' \subseteq C$ we mean the order of the candidates in C' such that the preferences of v with respect to the candidates in C' are preserved. A **subinstance** of (V, C) restricted to $C' \subseteq C$ consists of all $v_{C'}$ with $v \in V$.

Now, we state two lemmas that are crucial for the algorithm.

Lemma 6. In an input instance with maximum KT-instance d, the positions of a candidate in two votes differ by at most d.
Proof. Consider a candidate a and two votes v and w. Assume that $\text{pos}_a(a) = p$ and $\text{pos}_a(a) \geq p + d + 1$. Then, in w there are at least $p + d + 1$ candidates that are better than a and in v there are p candidates that are better than a. Therefore, there are at least $d + 1$ candidates that are ranked higher than a in w and lower than a in v. That means, the KT-distance between v and w is at least $d + 1$, a contradiction. □

Lemma 7. In an input instance with maximum KT-instance d, every block of size $d + 1$ contains at most $2d + 1$ candidates.

Proof. Assume that there are $2d + 2$ candidates $c_1, c_2, \ldots, c_{2d+2}$ in a block of size $d + 1$. Without loss of generality, we assume $v_1 := c_1 > \cdots > c_d > \cdots > c_{d+1} > \cdots > c_{2d+2}$. Since candidate c_{2d+2} is in the considered block, it must be placed at a position between 1 and d in at least one vote $v_i \in V$. Then, the positions of c_{2d+2} in v_1 and v_i differ by more than d, a contradiction to Lemma 6. □

Basic idea. For designing the algorithm we use that blocks of size $d + 1$ can be used to decompose an election when computing the Kemeny score. More precisely, consider a block (i) of size $d + 1$, then any candidate a with $a \notin \text{block}(i)$ must fulfill either $\text{pos}_v(a) < i$ for all $v \in V$ or $\text{pos}_v(a) > i + d + 1$ for all $v \in V$. Further, we can show that there is a Kemeny consensus in which a must have a position in a range that is a function of d. That means, if we iterate from left to right over the votes and store the Kemeny score for all "partial orders" of the candidates of a block, we can forget all candidates that appear only left of this block.

Roughly speaking, our algorithm works as follows: It iterates from left to right over the votes and, in each iterative step, considers a block of size $d + 1$. That is, in the first iterative step, the initialization, it considers all possible orders of the candidates of block(0) and uses a table to store the scores of all such orders with respect to the subinstance of (V, C) restricted to block(0). Then, in the following iterations, it considers block(i) with $i \geq 1$. The computation of the score of the orders of block(i) is based on the table entries for block$(i-1)$. The Kemeny score of (V, C) is the minimum of the entries for block$(n - d - 1)$. For the formal description of the algorithm we need some further definitions.

Definitions. For a subset of candidates C', let $\pi(C')$ denote an order of C'. For two candidate subsets C' and C'', the orders $\pi'(C')$ and $\pi''(C'')$ are compatible if the candidates of $C' \cap C''$ have the same order according to π' and π''. Further, if $C' \subseteq C''$, let $\pi_{C'}(C'')$ denote the order of the candidates of C' that is compatible with $\pi(C'')$. For an order $\pi(\text{block}(i))$ the set $\text{Comp}(i, \pi)$ contains all orders of candidates of block$(i-1)$ that are compatible with $\pi(\text{block}(i))$. For any fixed order $\pi(C')$ of $C' \subseteq C$, its score $S(\pi(C'))$ is the sum of its KT-distances between $\pi(C')$ and all subvotes of votes in V restricted to C'.

7
Initialization:
For all permutations \(\pi(\text{block}(0)) \)

\[
T(\pi(\text{block}(0)), 0) := S(\pi(\text{block}(0)))
\]

Update:
For \(i = 1, \ldots, m - d + 1 \)

\[
T(\pi(\text{block}(i)), i) := \min_{\pi' \in \text{Comp}(i, \pi)} \{ T(\pi'(\text{block}(i - 1)), i - 1) \\
+ S(\pi(\text{block}(i))) - S(\pi(\text{block}(i - 1)) \text{block}(i)) \}
\]

Output:

\[
\min_{\pi(m - d + 1)} \{ T(\pi(\text{block}(m - d - 1)), m - d - 1) \}.
\]

Fig. 1. Dynamic programming algorithm for KEMENY SCORE.

Algorithmic details. Next, we define the table \(T \) used in the dynamic programming algorithm. The columns of \(T \) one-to-one correspond to the candidate subsets \(\text{block}(i) \subseteq C \) with \(0 \leq i \leq m - d - 1 \). Each row corresponds to a possible order of the candidates in \(\text{block}(i) \). By Lemma 7, the number of candidates of each block is upper-bounded by \(2d + 1 \). Thus, \(T \) has at most \((2d + 1)! \) rows. An entry in column \(\text{block}(i) \) and row \(\pi \), where \(\pi \) is an order of the candidates in \(\text{block}(i) \), stores the minimum score of the orders \(\pi' \) of \(C' := \bigcup_{j \leq i} \text{block}(j) \) under the condition that \(\pi' \) is compatible with \(\pi \).

The algorithm is given in Figure 1. In the following, we first prove the correctness of the dynamic programming and then its running time.

Lemma 8. The dynamic programming algorithm (see Figure 1) correctly decides KEMENY SCORE.

Theorem 3. KEMENY SCORE can be solved in \(O((2d + 1)! \cdot d \log d \cdot m \cdot n) \) time with \(d \) being the maximum KT-distance between two input votes.

Proof. As argued above, the table size is bounded by \(O((2d + 1)! \cdot m) \). For the initialization, we compute the score of all orders of at most \(2d + 1 \) candidates and, for each order, the score is computable in \(O(n \cdot d \log d) \) time as argued in the introduction. Therefore, the initialization can be done in \(O((2d + 1)! \cdot n \cdot d \log d) \) time.

At \(\text{block}(i) \) with \(i \geq 1 \), we compute first

\[
\min_{\pi' \in \text{Comp}(i, \pi)} \{ T(\pi'(\text{block}(i - 1)), i - 1) \}
\]

for all possible orders \(\pi(\text{block}(i)) \). Using a pointer data structure, this can be done in \((2d + 1)! \cdot d \log d \) time by going through the \((i - 1) \)th column once. Thus, the entries of \(T(\pi(\text{block}(i)), i) \) can be computed in \(O((2d + 1)! \cdot d \log d \cdot n) \) time, giving the running time of the algorithm. \(\square \)
Note that it is easy to modify the dynamic programming to return a Kemeny consensus within the same asymptotic running time. Furthermore, the algorithm can be easily adapted to deal with weighted votes and/or weighted candidates.

5 Parameterization by the Number of Candidates

Theorem 4. KEMENY SCORE can be solved in $O(2^m \cdot m^3 \cdot n)$ time.

Proof: The algorithm goes like this: For each subset $C' \subseteq C$ compute the Kemeny score of the given election system restricted to C'. The recurrence for a given subset C' is to consider every subset $C'' \subseteq C'$ where C'' is obtained by deleting a single candidate c from C'. Let π'' be a Kemeny consensus for the election system restricted to C''. Compute the score of the permutation π' of C' obtained from π'' by putting c in first position. Take the minimum score over all π' obtained from subsets of C'. The correctness of this algorithm follows from the following claim.

Claim: A permutation π' of minimum score obtained in this way is a Kemeny consensus of the election system restricted to C'.

Proof: Let σ' be a Kemeny consensus of the election system restricted to C', and suppose that candidate c is on the first position of σ'. Consider $C'' = C' \setminus \{c\}$, and let σ'' be the length-$|C''|$ tail of σ'. The score of σ'' is $t + u$, where u is the score of π'' for the votes that are the restriction of V to C'', and where t is the "cost" of inserting c into the first position: Herein, the cost is the sum over the votes (restricted to C') of the distance of c from first position in each vote. Now suppose that π'' is a Kemeny consensus of the election system restricted to C''. Compared with the score of π'', augmenting π'' to π' by putting c in the first position increases the score of π' by exactly t. The score of π'' is at most u (since it is a Kemeny consensus for the election system restricted to C''), and so the score of π' is at most $t + u$, so it is a Kemeny consensus for the election system restricted to C'. This completes the proof of the claim.

For each of the subsets of C, the algorithm computes a Kemeny score. Herein, a minimum is taken from at most m values and the computation of each of these values needs $O(m \cdot n)$ time. Therefore, the total running time is $O(2^m \cdot m^3 \cdot n)$. \qed

6 Ties and Incomplete Votes

6.1 Kemeny Score with Ties

Introducing ties, we use the definition of Hemaspaandra et al. [13]: Each vote consists of a ranking of candidates that can contain ties between candidates and the Kemeny consensus can contain ties as well. In the definition of the KT-distance, we then replace $d_{p,q}(c,d)$ by

$$t_{p,q}(c,d) := \begin{cases} 0 & \text{if } p \text{ and } q \text{ agree on } c \text{ and } d \\ 1 & \text{if } p \text{ (} q \text{) has a preference among } c \text{ and } d \text{ and } q \text{ (} p \text{) does not} \\ 2 & \text{if } p \text{ and } q \text{ strictly disagree on } c \text{ and } d. \end{cases}$$
Additionally, we extend the KT-distance to candidate weights, that is, having a weight function \(w : C \to R^+ \), where the KT-distance between two votes \(p, q \) then is defined as

\[
\text{dist}(p, q) = \sum_{\{c, d\} \in C} w_c \cdot w_d \cdot t_{p, q}(c, d).
\]

By increasing the Kemeny score by two if two votes strictly disagree on two candidates, the overall score becomes larger. For this reason, it is not surprising that also in case of ties we can get a linear problem kernel and a search tree with respect to the parameter Kemeny score. To this end, we extend the notion of dirty pairs such that a pair of candidates \(\{a, b\} \) is also dirty if we have \(a = b \) in one vote and \(a > b \) or \(a < b \) in another vote. Then, we can obtain a linear problem kernel in complete analogy to the case without ties. Concerning the search tree, by branching for a dirty pair \(\{a, b\} \) into the three cases \(a > b \), \(a = b \), and \(a < b \), we already achieve a branching vector (1, 2, 4) and, hence, the branching number 1.76. For example, having three votes in which candidates \(a \) and \(b \) are ranked equal in two of the votes and we have \(a < b \) in the other vote, by branching into the case \(\{a = b\} \) we have one inversion that counts one, branching into \(\{a < b\} \) we have two inversions that count one, and branching into \(\{a > b\} \) we have two inversions that count one and one inversion that counts two.

With a little bit more effort, we can also show that Kemeny Score with Ties is fixed-parameter tractable with respect to the parameter KT-distance. To use the dynamic programming of Section 4, we need some bounds on the positions a candidate can assume and the size of a block in analogy to Lemma 6 and Lemma 7. In order to achieve this, we need a preprocessing step, which is based on the following lemma:

Lemma 9. Let \(d \) denote the maximum KT-distance of an input instance. If there is a vote in which at least \(d + 2 \) candidates \(c_1, \ldots, c_{d+2} \) are tied, then in a yes-instance the candidates \(c_1, \ldots, c_{d+2} \) are tied in all votes.

Now, we can state the following data reduction rule:

Rule 3. If there are \(d + i \) candidates for any integer \(i \geq 2 \) that are tied in all votes, replace them by one candidate whose weight is the sum the weights of the replaced candidates.

The correctness of Rule 3 follows from Lemma 9. Further, note that the dynamic programming procedure from Section 4 can be adapted to deal with candidate weights. Now, similar to Lemma 6 we can prove the following:

Lemma 10. In a candidate-weighted instance with maximum KT-instance \(d \) obtained after exhaustively applying Rule 3, the positions of a candidate in two votes differ by at most \(2d + 1 \).

Based on Lemma 10, in the same way as for Lemma 7 we get the following.
Lemma 11. In a reduced instance with maximum KT-instance \(d \), every block of size \(2d \) contains at most \(4d \) candidates.

Using Lemmas 10 and 11, we can show that with the dynamic programming algorithm given in Section 4, the following running time can be obtained.

Theorem 5. KEMENy SCORE with TIES can be solved in \(O((4d)! \cdot d \log d \cdot n \cdot m) \) time with \(d \) being the maximum KT-distance between two input votes.

6.2 Incomplete Votes

We now consider KEMENy SCORE WITH INCOMPLETE VOTES, first introduced by Dwork et al. [11]. Here, the given votes are not required to be permutations of the entire candidate set, but only of candidate subsets, while the Kemeny consensus sought for should be a permutation of all candidates. In the definition of the KT-distance, we then replace \(d_{p,q}(c,d) \) by

\[
d'_{p,q}(c,d) = \begin{cases}
0 & \text{if } \{c,d\} \not\subseteq C_p, \text{ or } \{c,d\} \not\subseteq C_q, \text{ or } p \text{ and } q \text{ agree on } c \text{ and } d \\
1 & \text{otherwise},
\end{cases}
\]

where \(C_v \) contains the candidates occurring in vote \(v \).

A simple reduction shows that, in contrast to KEMENy SCORE with complete votes, the parameterization by the maximum KT-distance does not lead to fixed-parameter tractability for KEMENy SCORE WITH INCOMPLETE VOTES:

Theorem 6. KEMENy SCORE WITH INCOMPLETE VOTES is NP-hard even if the maximum KT-distance between two input votes is zero.

By way of contrast, we now show that, parameterized by the Kemeny score \(k \), also the incomplete case of KEMENy SCORE is fixed-parameter tractable.

Theorem 7. KEMENy SCORE WITH INCOMPLETE VOTES is solvable in \((1.48k)^k \cdot n^{o(1)}\) time with \(k \) being the Kemeny score.

Proof. Let \((V, C, k)\) be the given KEMENy SCORE instance. The algorithm consists of three steps. First, transform the given election system into one where each vote contains only two candidates. For example, a vote \(a > b > c \) is replaced by three votes: \(a > b \), \(b > c \), and \(a > c \). Second, find all dirty pairs and, for each of them, remove the corresponding votes and branch into two cases, in each case an ordering between the two candidates of this pair is fixed and the parameter \(k \) is decreased accordingly. Third, after having processed all dirty pairs, we construct an edge-weighted directed graph for each of the election systems generated by the second step. The vertices of this graph one-to-one correspond to the candidates. An arc \((c, c')\) from vertex \(c \) to vertex \(c' \) is added if there is a vote of the form \(c > c' \) and a weight equal to the number of the \(c > c' \)-votes is assigned to this arc. For each pair of candidates \(c \) and \(c' \) where the second step has already fixed an ordering \(c > c' \), add an arc \((c, c')\) and assign a weight equal to \(k + 1 \) to this arc. Observe that solving KEMENy SCORE
on the instances generated by the first two steps is now equivalent to solving the WEIGHTED DIRECTED FEEDBACK ARC SET problems on the constructed edge-weighted directed graphs. DIRECTED FEEDBACK ARC SET is the special case of WEIGHTED FEEDBACK ARC SET with unit edge weight. The fixed-parameter algorithm by Chen et al. [6] for DIRECTED FEEDBACK ARC SET can also handle WEIGHTED DIRECTED FEEDBACK ARC SET with integer edge weights [5]. Therefore, applying this algorithm in the third step gives a total running time of \((1.48k)^k \cdot n^{O(1)} \).

References

Appendix

Proof of Lemma 2

Proof. If a candidate \(c \) is not dirty, then there must be a partition of the remaining candidates into two subsets \(C_1 \) and \(C_2 \) such that in all votes all candidates \(c_1 \in C_1 \) are positioned better than \(c \) and all candidates \(c_2 \in C_2 \) are positioned worse than \(c \). Thus, due to Lemma 1, the position of \(c \) in every Kemeny consensus is already determined and the removal of \(c \) does not affect the Kemeny score. The running time of this rule is obvious: For each candidate \(c \), we construct an \(n \times (m - 1) \) binary matrix \(M \). Each row corresponds to a vote and each column corresponds to a candidate \(c' \neq c \). If \(c' \) is positioned better than \(c \) in vote \(v \), then the entry of row \(v \) and column \(c' \) of \(M \) has a value 1; otherwise, it is 0. Candidate \(c \) is a dirty candidate if the rows of \(M \) are not identical. The matrix \(M \) can clearly be constructed in \(O(mn) \) time. \(\Box \)

Proof of Lemma 3

Proof. By Rule 1, we know that there are only dirty candidates in a reduced election. If there are more than \(2k \) dirty candidates, then they must form more than \(k \) dirty pairs. For each dirty pair, there are two possibilities to position the candidates of this pair in any preference list. For both possibilities, the score of this preference list is increased by at least one, implying that, with more than \(2k \) dirty pairs, there is no preference list with a score at most \(k \). \(\Box \)

Proof of Lemma 5

Proof. Clearly, between two distinct preference lists, the KT-distance is at least 1. By Rule 2 we know that a preference list has at most \(k \) "copies" in \(V \). Therefore, if \(|V| > 2k \), then the score of every preference list is at least \(k + 1 \) in \((V, C) \). \(\Box \)

Proof of Theorem 2

Proof. First, we show that the above search tree algorithm solves KEMENY SCORE correctly. At the root of the search tree, we compute the set of dirty pairs, which is clearly doable in \(O(m^2 n) \) time. Here, exemplarily we only give a correctness proof for Case 3. The other two cases can be shown in a similar but much simpler way. The branching vectors in these two cases are also easy to verify.

In Case 3, we reach a node \(v \) in the search tree with no dirty triple but at least one dirty pair \(\{a, b\} \). If there is an order of \(a \) and \(b \) implied by \(L \), then we have to obey this order, since it is fixed by \(v \)'s ancestors in the search tree. Otherwise, without loss of generality, assume that at least half of the votes order \(a \) before \(b \). It remains to show that, with the orders implied by \(L \), there exists always a Kemeny consensus with \(a > b \).

Consider a Kemeny consensus \(l \) obeying all orders from \(L \) and having \(b > a \). Then, we switch the positions of \(a \) and \(b \) in \(l \), getting another preference list \(l' \). In the following, we show that the score \(S_l \) of \(l \) is at most the score \(S_{l'} \) of \(l' \). Since \(l \) and \(l' \) differ only in the positions of \(a \) and \(b \), the difference between \(S_l \) and \(S_{l'} \) can only come from the candidate pairs consisting of at least one of \(a \) and \(b \).
For the candidate pair \(\{a, b\} \), switching the positions of \(a \) and \(b \) clearly does not increase \(S_T \) in comparison with \(S_L \). Here, we consider only the candidate pair \(\{a, c\} \) with \(c \neq b \). The case for the candidate pair \(\{b, c\} \) can be handled similarly. If \(c > b \) or \(a > c \) in \(L \), then the position switch does not affect \(S_L - S_T \) with respect to \(c \). Therefore, it suffices to show that there is no candidate \(c \in \{a, b\} \) such that \(l \) induces \(b > c > a \). Due to Lemma 1, such a candidate \(c \) can exist only if there are some votes with \(b > c \) and some votes with \(c > a \). If all votes have \(b > c \), then the order \(b > c \) has already been added to the set \(L \) at the root of the search tree, since this order can be determined based on Lemma 1. If not all votes have \(b > c \), then \(\{b, c\} \) is a dirty pair. By the precondition of Case 3, \(\{b, c\} \notin D \) and, thus, \(L \) contains the order \(b > c \). Thus, in both cases, \(L \) contains \(b > c \). Again, by the precondition of Case 3, \(\{a, c\} \) is not a dirty pair in \(D \) and, hence, there must be an order between \(a \) and \(c \) in \(L \). The order \(c > a \) cannot be in \(L \); otherwise, \(b > a \) would be implied by \(L \), a contradiction. Further, \(a > c \) in \(L \) contradicts the fact that \(l \) obeys the fixed orders in \(L \). Therefore, there is no candidate \(c \in \{a, b\} \) such that \(l \) has \(b > c > a \). This completes the proof of the correctness of Case 3 and the algorithm.

Concerning the running time, using standard interleaving techniques [15,14] for kernelization and search trees, we arrive at the running time of \(O(1.52^h + m^2n) \).

Proof of Lemma 8

Proof. To show the correctness, we need the following two observations:

First, if we have \(a \in \text{block}(i) \) and \(a \in \text{block}(i') \) with \(i \leq i' \), then we can conclude that \(a \in \text{block}(j) \) for all \(i \leq j \leq i' \). We call this the consistency property. This observation follows from Lemma 6 and the fact that the size of the considered blocks is \(d + 1 \): Let \(p := \min_{v \in V} \text{pos}_v(a) \) and \(p' := \max_{v \in V} \text{pos}_v(a) \). Then, we have \(a \in \text{block}(i) \) if \(p - d \leq i \leq p \) or \(p' - d \leq i \leq p' \). Further, by Lemma 6, \(p' - p \leq d \) and, thus, \(a \in \text{block}(i) \) for \(p - d \leq i \leq p' \).

Second, if there is no \(i \) with \(a \in \text{block}(i) \) and \(b \in \text{block}(i) \) with \(a \neq b \), then we have either \(a < b \) or \(b < a \) in all votes. To validate this observation, assume that there is no \(i \) with \(a \in \text{block}(i) \) and \(b \in \text{block}(i) \) and there are two votes \(v \) and \(u \) such that \(a < b \) in \(v \) and \(b < a \) in \(u \). Since we consider only blocks of size \(d + 1 \), the positions of \(a \) and \(b \) in both votes must differ by more than \(d + 1 \). This means that either for \(a \) or for \(b \) the positions in \(v \) and \(u \) must differ by more than \(d \), a contradiction to Lemma 6.

Altogether, the correctness of the algorithm follows from the fact that it tries out all possible orders of the candidates that occur together in \(\text{block}(i) \) for at least one \(i \) with \(0 \leq i \leq m - d - 1 \). The minimum score of all such orders is saved in table \(T \). Based on the consistency property, a "partial" order that achieves a minimum score in a subinstance is extended by block by block until we end up with a Kemeny consensus. By the second observation, for all pairs of candidates \(a, b \) that never occur together in a block, we have either \(a < b \) or \(b < a \) in all votes. Obviously, this relative order is maintained during the dynamic programming.

Proof of Lemma 9

14
Proof. We show the lemma by contradiction. Assume that \(d + 2 \) candidates \(c_1 = c_2 = \cdots = c_{d+2} \) are tied within a vote \(v \). If there is a vote \(w \) in which not all candidates from \(C' := \{c_1, \ldots, c_{d+2}\} \) are tied, then there must be a non-empty subset \(D \subseteq C' \) whose candidates are positioned in \(w \) better or worse than the remaining candidates from \(C' \).

Then, to compute the KT-distance between \(v \) and \(w \), for every candidate from \(D \) we have to increase the KT-distance by \(x := |C'| - |D| \); in total, we have to increase the score by \(|D| \cdot x \). It is easy to verify that the minimum value that \(|D| \cdot x \) may take is \(d + 1 \), a contradiction to the fact that the KT-distance between two votes is at most \(d \).

\[\square \]

Proof of Lemma 10

Proof. Consider a candidate \(a \) and two votes \(v \) and \(w \) and assume that \(\text{pos}_v(a) = p \) and \(\text{pos}_w(a) \geq p + 2d + 2 \). As after exhaustive application of Rule 3 in \(w \) at most \(d \) candidates can be tied with \(a \), there are at least \(p + d + 1 \) candidates that are better than \(a \). In \(v \) there are at most \(p \) candidates that are better than \(a \). Therefore, there are at least \(d + 1 \) candidates that are ranked higher than \(a \) in \(w \) and lower than \(a \) in \(v \). As a consequence, the KT-distance between \(v \) and \(w \) is at least \(d + 1 \), a contradiction.

\[\square \]

Proof of Theorem 6

Proof. We employ a reduction from the \(\text{NP} \)-hard \textsc{Directed Feedback Arc Set} problem, where, given a directed graph \(G = (V, E) \) and a non-negative integer \(k \), one asks for an \(E' \subseteq E \) with \(|E'| \leq k \) such that the removal of \(E' \) transforms \(G \) into an acyclic graph. This reduction can also be found in \cite{11}. Let \((G = (V, E), k) \) be an instance of \textsc{Directed Feedback Arc Set}. Set \(C := V \) and, for each arc \((u, v) \in E\), add a vote \(u > v \). Clearly, every feedback arc set \(E' \) with \(|E'| \leq k \) of \(G \) corresponds to a Kemeny consensus having a score of \(k \).

\[\square \]