Charles Darwin University

CDU eSpace
Institutional Repository

 
CDU Staff and Student only
 

Soil organic carbon content at a range of north Australian tropical savannas with contrasting site histories

Chen, Xiaoyong, Hutley, Lindsay B. and Eamus, Derek (2005). Soil organic carbon content at a range of north Australian tropical savannas with contrasting site histories. Plant and Soil: international journal on plant-soil relationships,268(31-Dec):161-171.

Document type: Journal Article
Citation counts: Scopus Citation Count Cited 14 times in Scopus Article | Citations

Google Scholar Search Google Scholar

IRMA ID 73195523xPUB36
Title Soil organic carbon content at a range of north Australian tropical savannas with contrasting site histories
Author Chen, Xiaoyong
Hutley, Lindsay B.
Eamus, Derek
Journal Name Plant and Soil: international journal on plant-soil relationships
Publication Date 2005
Volume Number 268
Issue Number 31-Dec
ISSN 1573-5036   (check CDU catalogue  open catalogue search in new window)
Scopus ID 2-s2.0-21244441528
Start Page 161
End Page 171
Total Pages 11
Place of Publication Germany
Publisher Springer Publishing
Field of Research 0503 - Soil Sciences
0607 - Plant Biology
HERDC Category C1 - Journal Article (DEST)
Abstract Soils play an important role in the global carbon cycle, and can be major source or sink of CO2 depending upon land use, vegetation type and soil management practices. Natural and human impact on soil carbon concentration and storage is poorly understood in native north Australian savanna, yet this represents the largest carbon store in the ecosystem. To gain understanding of possible management impacts on this carbon pool, soil organic carbon (SOC) of the top 1 m of red earth sands and sandy loams common in the region was sampled at 5 sites with different vegetation cover and site history ( fire regime and tree removal). SOC was high when compared to other published values for savannas and was more comparable with dry-deciduous tropical forests. Sites sampled in this study represent high rainfall savannas of northern Australia (> 1700 mm annual rainfall) that feature frequent burning ( 2 in 3 years or more frequent) and a cycle of annual re-growth of tall C-4 grasses that dominate the savanna understorey. These factors may be responsible for the higher than expected SOC levels of the surface soils, despite high respiration rates. Medium term fire exclusion (15 - 20 years) at one of the sampled sites ( Wildlife Park) dramatically reduced the grassy biomass of the understorey. This site had lower SOC levels when compared to the grass dominated and frequently burnt sites, which may be due to a reduction in detrital input to surface ( 0 - 30 cm) soil carbon pools. Exclusion of trees also had a significant impact on both the total amount and distribution of soil organic carbon, with tree removal reducing observed SOC at depth ( 100 cm). Soil carbon content was higher in the wet season than that in the dry season, but this difference was not statistically significant. Our results indicated that annual cycle of grass growth and wildfire resulted in small carbon accumulation in the upper region of the soil, and removal of woody plants resulted in significant carbon losses to recalcitrant, deep soil horizons greater than 80 cm depth.
Keywords australia
carbon cycling
fire
savannas
tree clearing
wet-dry tropics
fine-root biomass
seasonal patterns
forest
productivity
respiration
climate
vegetation
dynamics
DOI http://dx.doi.org/10.1007/s11104-004-0249-9   (check subscription with CDU E-Gateway service for CDU Staff and Students  check subscription with CDU E-Gateway in new window)
 
Versions
Version Filter Type
Access Statistics: 51 Abstract Views  -  Detailed Statistics
Created: Fri, 12 Sep 2008, 08:35:25 CST by Administrator