Diabetes and its associated complications are a significant health problem facing Indigenous Australians. The prevalence of type 2 diabetes mellitus in Aboriginal and Torres Strait Islander peoples has been estimated to be as high as 32%. While early diagnosis and treatment leads to improved outcomes, diabetes remains undiagnosed in up to 50% of patients.

In the remote Kimberley region of Western Australia, guidelines for the diagnosis of diabetes, based on national Australian guidelines, require two separate laboratory venous blood glucose measurements showing raised levels in an asymptomatic patient, one elevated venous blood glucose measurement in a symptomatic patient, or an oral glucose tolerance test consistent with diabetes. Due to the distance of many health care facilities from a laboratory, and the infrequent transport links, the requirement for venous glucose results can significantly delay diagnosis, patient feedback and education. Many people also move between communities and venous glucose results may not be readily available when the person is next seen.

Immediate results with diagnostic significance would improve the diagnosis and management of diabetes at remote sites. While earlier studies have shown a high level of concordance between laboratory venous blood glucose and point-of-care (POC) capillary blood glucose measurements, these have mainly been conducted in controlled, urban environments. In 2003, Martin et al. at a single remote clinic in the Kimberley, showed that POC capillary glucose measurement may be as useful as a screening tool to exclude a diagnosis of diabetes. However, this study used well calibrated and maintained equipment operated by specifically trained staff, and thus did not reflect “real world” remote health care.

We aimed to determine whether POC capillary blood glucose measurement was sufficiently accurate to allow the diagnosis or exclusion of diabetes as part of usual remote primary health care practice.

METHODS
Data were collected by local health care providers from May to November 2006 at seven sites across the Kimberley (Box 1). Any patient who had venous blood glucose measurement requested as part of usual clinical care was invited to participate.

POC glucose measurement and venipuncture
POC measurement of capillary blood glucose and venipuncture were done concurrently and the time of each test was recorded. Data were excluded if POC capillary glucose measurement and venipuncture occurred more than 30 minutes apart.

Capillary blood glucose was measured by a primary health care provider via a finger-prick blood sample and analysed on the POC glucometer usually used at each site. No attempt was made to standardise health-provider education, or glucometer maintenance or calibration. The two glucometers used in our study were the Accu-Chek Advantage (Roche Diagnostics, Sydney, NSW), which displays whole blood capillary glucose levels, and the MediSense Optium (Abbott Diabetes Care, Melbourne, Vic), which mathematically converts a whole blood measurement to a capillary plasma glucose level (technical data supplied by the manufacturer).

Venous whole blood samples were collected in containers with fluoride oxalate. Normal procedures at each clinic were used for storage (whole blood was stored at 4°C) and transport of whole blood samples to one of the three laboratories in the Kimberley region (Box 1).

Venous plasma glucose levels were measured enzymatically on a Vitros 250 Analyser (Ortho-Clinical Diagnostics, Rochester, NY, USA) using glucose oxidase spectrophotometric dry chemistry. The distance to the laboratory from the study sites ranged from 2 km by road to 280 km by air, and the time...
for the specimen to reach the laboratory varied from 30 min to 7 days.

Ethical approval
Ethical approval was obtained from The University of Western Australia Human Research Ethics Committee and the Western Australian Aboriginal Health Information and Ethics Committee. All study participants were provided with verbal and written information regarding the study, and informed written consent was obtained. If necessary, Aboriginal health workers provided cultural and language translations.

Statistical analysis
Data were analysed using SPSS, version 14.0 (SPSS Inc, Chicago, Ill, USA) and Stata, version 7.0 (StataCorp, College Station, Tex, USA) and are presented as mean and 95% confidence intervals (CIs) unless otherwise stated. Concordance between POC and laboratory blood glucose values was assessed by the technique of Lin, which measures the agreement between two methods. Mean difference (bias) and limits of agreement were determined using the techniques of Bland and Altman. POC capillary equivalence values for excluding and diagnosing diabetes were determined from receiver operating characteristics (ROC) curves, using laboratory values of < 5.5 and ≥ 11.1 mmol/L, respectively. Differences in proportions were determined using the two-tailed Fisher’s exact test. Multivariate linear regression analysis was used to determine whether patient or processing factors affected the relationship between POC and laboratory glucose levels.
RESULTS

Two hundred participants were enrolled, and 164 included in the analysis. The reasons for exclusion were missing or inadequate tests in 29 participants, and more than 30 minutes elapsing between POC measurement and venipuncture in seven participants. Descriptive data on participants are listed in Box 2. Almost half of the excluded subjects (44%) were assessed at one clinic, which happened to use an Accu-Chek glucometer, reducing the number of results for that glucometer.

Unadjusted POC blood glucose measurements and laboratory-measured venous blood glucose levels showed a high degree of concordance (Box 3A). The concordance was only marginally altered by stratifying the analysis by different glucometers and back-converting the MediSense POC results from plasma to whole blood (Box 3B and Box 3C). The limits of agreement between POC and laboratory values are presented in Box 3D. Fasting POC blood specimens tended to have greater concordance with laboratory values ($\rho = 0.96$, SE, 0.01; $P < 0.001$) compared with non-fasting specimens ($\rho = 0.92$, SE, 0.01; $P < 0.001$).

In a multivariate analysis, the MediSense glucometer and fasting at the time of blood glucose measurement were associated with less difference between the POC and laboratory glucose levels at clinically important values (0–12 mmol/L) and greater differences at higher values. These associations did not alter the explained variance of the model ($r^2 = 0.89$), suggesting that this statistical relationship was of no clinical significance. The relationship between POC and laboratory glucose levels was not independently influenced by the time between POC glucose measurement and venipuncture, a pre-existing diagnosis of diabetes, or the time delay in collecting and processing the laboratory specimen.

The most clinically appropriate POC threshold value for excluding (venous blood glucose level, < 5.5 mmol/L) or diagnosing diabetes (venous blood glucose level, ≥ 11.1 mmol/L) was determined using ROC curves (Box 4). A POC reading of < 5.5 mmol/L had a sensitivity of 53.3%, a specificity of 94.4%, and a positive-predictive value of 88.9% for a venous value of < 5.5 mmol/L. Sensitivity was increased to 61.9% (Fisher’s exact test, $P = 0.44$) in those subjects who had fasted before blood glucose measurement. The choice of POC glucometer had a significant influence on sensitivity (Accu-Chek, 29.4%; MediSense, 60.3%; $P < 0.05$). However, none of these factors greatly influenced specificity. POC readings ≥ 12.2 mmol/L had

5 Recommendations for the use of point-of-care glucose measurement in screening for and diagnosing diabetes in adults in the Kimberley

<table>
<thead>
<tr>
<th>Prompt annual screening for diabetes in all Kimberley residents aged 15 years and over</th>
<th>Venous blood required for other reasons (eg, lipids testing due, serological screening for STDs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Point-of-care capillary blood glucose testing</td>
<td>Laboratory testing of venous blood glucose level</td>
</tr>
<tr>
<td>< 5.5 mmol/L</td>
<td>Laboratory testing of levels of glucose, lipids, glycated haemoglobin, and estimated glomerular filtration rate</td>
</tr>
<tr>
<td>Diabetes unlikely</td>
<td>Diabetes likely</td>
</tr>
<tr>
<td>Retest in 1 year</td>
<td>Further management based on the laboratory venous blood glucose level and the diabetes type 2 management protocol of the Kimberley Regional Guidelines8</td>
</tr>
</tbody>
</table>

STDs = sexually transmitted diseases.
a sensitivity of 83.3%, a specificity of 99.3%, and a positive-predictive value of 95.2% for a venous value of ≥ 11.1 mmol/L. In this setting, sensitivity was non-significantly reduced in fasted subjects (75.0%; P=0.54) and when using the MediSense glucometer (81.3%; P=1.0) compared with not fasted (85.0%) and using the Accu-Chek glucometer (87.5%). Again, specificity was not greatly influenced by these factors.

DISCUSSION

Our study confirmed that obtaining venous glucose results in a timely manner in remote areas is very difficult. Some samples took 7 days to reach the laboratory, and on many occasions an appropriate venous sample did not arrive at all, leading to further delays and/or missed diagnoses. Thus, for logistical reasons, relying solely on venous laboratory results remains a significant problem in the Kimberley and other remote areas.

POC values were generally marginally higher than venous samples at the lower end of the scale, but lower than venous results at the upper end of the scale (Box 3D). Nevertheless, this difference did not alter the diagnostic utility of POC capillary blood glucose measurement in this setting, as its high specificity showed. We also found that fasting POC blood glucose results are more sensitive than non-fasting results in excluding diabetes, and less sensitive in diagnosing it. However, it was reassuring that, regardless of whether the test was performed fasting or non-fasting, and irrespective of the glucometer used, specificity at both ends of the diagnostic range remained high.

In clinical practice, being able to either diagnose or exclude diabetes is far more important than concordance between POC and venous plasma levels across the range of glucose levels. The cut-off values for POC glucose levels and their diagnostic utility, however, require validation.10 While the guidelines of the Central Australian Rural Practitioners Association (CARPA) use cut-offs of 5.0 and 12.0 mmol/L,14 these are not evidence-based. Our results concurred with the World Health Organization recommendations of random POC plasma glucose levels ≥ 12.2 mmol/L for diagnosing diabetes and < 5.5 mmol/L for excluding diabetes.15 Assuming that the study population was typical of Kimberley residents undergoing screening for diabetes, using a POC glucose cut-off of 5.5 mmol/L to exclude diabetes will reduce the need for venipuncture by 24%.

REFERENCES

AUTHOR DETAILS

Julia V Marley, PGDipSc, PGDipPolSt, PhD, Research Fellow1,4
Stephanie Davis, MB BS, Resident Medical Officer2
Kerryn Coleman, MB BS, MPh, Resident Medical Officer2
Bradleigh D Hayhow, BA(Hons), BMBS, Resident Medical Officer2
Greg Brennan, BNurs, Clinical Services Manager3
Jacki K Mein, MAE, FACHSHM, FAPPHM, Public Health Physician2
Carmel Nelson, MPH&TM, FACCRRM, FRACGP, Medical Director4
David Atkinson, MB BS, MPH, Medical Coordinator, Medical Educator1,4
Gratema P Maguire, FRACP, MPH&TM, PhD, Physician5,6

1. The Rural Clinical School of Western Australia, The University of Western Australia, Broome, WA.
2. Western Australian Country Health Service – Kimberley, Broome, WA.
3. Kimberley Regional Aboriginal Medical Service, Broome, WA.
4. Kimberley Aboriginal Medical Services Council, Broome, WA.
5. Department of Medicine, Cairns Hospital, Cairns, QLD.
6. Infectious Diseases Division, Menzies School of Health Research and Charles Darwin University, Darwin, NT.

Correspondence: Julia.Marley@uwa.edu.au

DIABETES

MJA • Volume 186 Number 10 • 21 May 2007 503