Charles Darwin University

CDU eSpace
Institutional Repository

 
CDU Staff and Student only
 

Resonant link inverters for trapezoidal flux electrically commutated machines

Tuckey, Andrew M. (2000). Resonant link inverters for trapezoidal flux electrically commutated machines. PhD Thesis, Northern Territory University.

Document type: Thesis
Citation counts: Google Scholar Search Google Scholar
Attached Files (Some files may be inaccessible until you login with your CDU eSpace credentials)
Name Description MIMEType Size Downloads
Download this reading Thesis_CDU_6581_Tuckey_A.pdf PDF version generated by Student application/pdf 1.47MB 1512
Reading the attached file works best in Firefox, Chrome and IE 9 or later.

Author Tuckey, Andrew M.
Title Resonant link inverters for trapezoidal flux electrically commutated machines
Institution Northern Territory University
Publication Date 2000
Thesis Type PhD
Subjects 0906 - Electrical and Electronic Engineering
0902 - Automotive Engineering
0999 - Other Engineering
Abstract To increase their usability wind and kinetic-tidal generators and Electric Vehicles (EVs) require efficient conversion between mechanical and electrical energy. The brushless dc machine (BLDCM) is entirely suitable for such a task, and to exemplify its use this thesis details a high efficiency kinetic-tidal energy generator test system. To maximise the energy yield it uses a low solidity turbine, an efficient transmission system, a BLDCM generator, and a maximum power point tracker. BLDCM cogging torque is also addressed. Measured results are presented, with the measured efficiency of the water-turbine being 30%in real-world conditions. Although the BLDCM is an efficient energy converter, it requires power electronic control; the soft-switched Actively Clamped Resonant DC Link Inverter (ACRLI) is an ideal choice for such. This thesis details a complete mathematical analysis of the ACRLI topology, and develops formulae for all important voltages, currents, and timing. A complete list of loss formulae for all major components, including a MOSFET clamp device, is presented. These formulae can be used to optimally design ACRLIs, and an optimal design for a 10 kW EV is described. Since the inductor in a high power ACRLI is problematic, this thesis addresses large ferritecored inductor design, analysing hysteresis and eddy current core loss and Litz wire conduction loss. An optimal but non-realisable design is shown, followed by a near-optimal, realisable and economical very low loss inductor design; an inductor was fabricated in accordance with this design and its measured loss in resonant link operation, being less than 20W for the 10kW high current inverter, is consistent with theory. The BLDCM’s applicability in the general EV field has been questioned due to its rectangular torque versus speed characteristic. To modify this characteristic a voltage booster could be used. The ACRLI can provide such boosting with the addition of a few components, the main one being a rectifier grade thyristor, thus creating the Actively Clamped Resonant DC Link-Boost Inverter (ACRL-BI) topology. This new topology is analysed along with an optimal thyristor dv=dt snubber, a suitable current control method with minimum switching frequency, and a novel driver interface for EV use. A 10 kWACRL-BI prototype was built and measured results of resonant and boost operation are shown.


© copyright

Every reasonable effort has been made to ensure that permission has been obtained for items included in CDU eSpace. If you believe that your rights have been infringed by this repository, please contact digitisation@cdu.edu.au.

 
Versions
Version Filter Type
Access Statistics: 163 Abstract Views, 1548 File Downloads  -  Detailed Statistics
Created: Wed, 26 Nov 2008, 14:30:53 CST by Iwona Rohoza